Graviola
Annona muricata

Family: Annonaceae
Synonyms: Annona macrocarpa, A. bonplandiana, A. cearensis, Guanabanus muricatus
Standard Common Name: Soursop - North American (Herbs of Commerce, 2nd edition)
Other Common Names: Graviola, guanábana (Herbs of Commerce, 2nd edition)
Additional Common Names: Graviola - Brazil
Guanában - Spanish
Guanában - French
Corossol - French
Epineux - French
Huanaba - Spanish
Toge-Banreisi - Taiwanese
Durian benggala - Indian
Nangka blanda - Indian
Cachiman épineux - French
Sauersack - German
Stachelannone - German

Overview

Botanical Description
Graviola is a small, upright tropical evergreen tree, 5-6 m high, with large, glossy, dark green leaves. It produces a large, heart-shaped, edible fruit that is 15-23 cm in diameter, is yellow-green in color and has white flesh inside. The fruit is popular in South America.

Ethnobotanical Uses
All parts of the graviola tree have been used medicinally in traditional herbal medicine. Traditional herbal medicine practitioners have attributed graviola with the following properties and actions: anthelmintic, antiparasitic, antipyretic, sedative, antispasmodic, nervine, hypotensive, anticonvulsant and digestive.

The traditional use of graviola has been recorded in herbal medicine systems in the following countries: Amazonia, Barbados, Borneo, Brazil, Cook Islands, Curacao, Dominica, Guatemala, Guam, Guyana, Haiti, Jamaica, Madagascar, Malaysia, Peru, Suriname, Togo and West Indies.

Summary of Traditional Uses of Graviola:

Flower: Bronchitis, cough.

Fruit: Colitis, diarrhea, dysentery, fevers, hydroscopy, juice, lactogogue, mouth sores, parasites, tranquilizer.

Seeds: Astringent, carminative, emetic, head lice, insecticide, parasites, skin parasites, worms.

Bark: Asthenia, asthma, childbirth, cough, diabetes, grippe, heart tonic, hypertension, nervine, parasites, sedative, spasms.

Leaf: Abscesses, arthritis pain, asthenia, asthma, astringent, bronchitis, catarrh, colic, cough, diabetes, diuretic, dysentery, edema, fever, gallbladder disorders, grippe, heart, hypertension, indigestion, infections, intestinal worms, lactogogue, liver disorders, malaria, nervine, nervousness, neuralgia, palpitations, parasites, parturition, rashes, rheumatism, ringworm, sedative, skin disorders, spasms, styptic, tonic, tranquilizer, tumors, ulcers, worms.

Root: Diabetes, sedative, spasms.

© Copyrighted 2004. Raintree Nutrition, Inc. Carson City NV 89701 All rights reserved.
Rootbark: Calmative, diabetes, spasms.

Primary Uses in Traditional Herbal Medicine Systems

Internal
Graviola is primarily employed in traditional herbal medicine systems for parasitic infections and cancer.\(^{22,25,32,33,24}\) It has also been used in some herbal medicine systems for its sedative and antispasmodic properties.\(^{24}\)

Chemistry

Various acetogenins in graviola have been documented with the following biological activity:

In vivo

Cytotoxic Activity
10 mg/kg of annonacin was given intraperitoneally in mice with Lewis lung cancer; a 57.9% inhibition was seen.\(^{34}\)

In vitro

Cytotoxic Activity

In vitro studies are numerous. Following are select *in vitro* studies where acetogenins were utilized against various cell lines:
- Human hepatoma hep G(2), 2, 2, 15 cell lines. A CC50=49.5 mcg/ml was seen in one study.\(^{35-38}\)
- Six human tumor cell lines.\(^{39-41}\)
- Prostate adenocarcinoma PC-3.\(^{39,40}\)
- Pancreatic carcinoma PACA-2.\(^{39,40}\)
- Murine leukemia L1210 and P388 leukemia.\(^{30,42,43}\)
- Human breast adenocarcinoma MDA-MB231 and carcinoma MCF-7.\(^{40,42,44}\)
- Human tumor multidrug-resistant SW480 (P-glycoprotein+, Pgp+) tumor cells.\(^{45}\)
- Human lung carcinoma A-549.\(^{44}\)
- Human colon cancer HT-29.\(^{44}\)
- Various cancer cell lines; growth was inhibited 50% at concentrations of <10-12 ug/ml.\(^{46}\)
- Adriamycin resistant tumor cells (M17/adr breast cancer cells); Non-adriamycin resistant tumor cells.\(^{47}\)
- Annonacin was able to kill various cancer cell lines at an IC50=<4 ug/mL.\(^{48}\)

Cytostatic Activity

Acetogenins have shown inhibition of tumor cell growth towards adriamycin resistant human mammary adenocarcinoma MCF-7/Adr cells.\(^{43,49}\)
Neurological Activity

In a 2002 study cultured mesencephalic dopaminergic neurons were exposed to total alkaloids from graviola rootbark, or two of the most abundant alkaloids coreximine and reticuline. After 24 hours 50% of dopaminergic neurons degenerated with 18 mcg/ml of total extract, 4.3 mcg/ml of coreximine or 100 mcg/ml reticuline. GABAergic neurons were also affected. Neuronal death, occurring by apoptosis, was attenuated by increasing the concentration of glucose in the culture. Toxin withdrawal after short-term exposure arrested cell death. Chronic exposure to these alkaloids may be an etiological factor in atypical Parkinson’s disease.

In a recent 2003 study one of the main acetogenins in graviola, annonacin, was added to mesencephalic cultures for 24 hours. It had an ED50 of 0.018 microM, killing dopaminergic neurons. Toxic effects were seen at lower concentrations when incubation time was extended over several days. Withdrawal of the toxin after short-term exposure arrested cell death. Annonacin also reduced the survival of non-dopaminergic neurons. Increasing glucose or mannose concentrations, along with the presence of annonacin, prevented neuronal death.

Acute treatment of mesencephalic dopaminergic neurons and GABA neurons in vitro with a rootbark extract of coreximine or reticuline reversibly inhibited dopamine uptake without causing neuronal death. GABA uptake was not affected.

Insecticidal

The acetogenins (such as squamocin) have shown activity against the following insects: M. sanborni, L. decemlineata, M. persicae, Blatella germanica.

In vivo and In vitro Research and Pharmacological Actions

Anticancerous Activity

Cytotoxic Activity

The leaf, seed, stem and bark have all been documented with in vitro cytotoxic activity utilizing various extracts including ethanol and water:

- Ethanol leaf extract showed activity against human hepatoma hep G 2,2,15.
- Leaf extract showed activity against human kidney carcinoma CA-A498. IC50=0.67 mcg/ml seen.
- Ethanol leaf extract showed activity against human breast carcinoma MCF-7. ED50=1.9 mcg/ml.
- Ethanol leaf & stem extract showed activity against human oral epidermoid carcinoma CA-9KB. ED50=<20 mcg/ml.
- Ethanol leaf extract showed activity against bovine kidney cell line MDBK. IC50=2 mcg/ml.
- Hexane, ethyl acetate and methanol extract showed activity against human histiocytic lymphoma U-937.
- Leaf & twig showed activity against human tumor cell lines.

Cytostatic Activity

The leaf inhibited tumor cell growth including adriamycin resistant human mammary adenocarcinoma MCF-7/Adr cells in vitro.

Antitumor Activity

Ethanol and chloroform extracts of the seed and leaf have shown antitumor activity in vitro. The leaf had an LC50=0.17 mcg/ml, demonstrated through the in vitro anticrustacean assay system.

Uterine Stimulant Activity

Water and ethanol extracts fed orally to rats at 0.033 ml/L had uterine stimulant activity.
Cardioactive and Hypotensive Activity

In one study 1 ml/L water extract of the leaf fed intravenously to rats resulted in a reduction in blood pressure by more than 30%. This activity may be due to the in vivo hypotensive activity of the leaf and stem. A water extract of the bark exhibited a cardiodepressant effect in rabbits.

Antispasmodic and Muscle Relaxant Activity

Ethanol and water extracts of the leaf and stem fed at 0.033 ml/L to guinea pigs had antispasmodic activity. In rabbits an ethanol extract at 3.3 ml/L relaxed smooth muscle; 2.2ml/L of a water extract had the same effect.

Neurological Activity

100 mg/kg of an ethanol leaf extract given intraperitoneally to mice had anticonvulsant activity.

Extracts of the fruit, leaf and seed have shown serotonin receptor binding activity in vitro.

Alcoholic extracts of the stem bark was administered to rats intragastrically at 100 mg/kg. One hour after administering the extract the rats were stressed by cold immobilization (placing animals in a restrainer for 3 hours at 4°C). Following is the effect of graviola on brain neurotransmitters versus controls:

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Noradrenaline (ng/gm)</th>
<th>Dopamine (ng/gm)</th>
<th>5-Hydroxytryptamine (ng/gm)</th>
<th>5-Hydroxy Indole-acetic acid (ng/gm)</th>
<th>Monoamine oxidase units/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Control</td>
<td>445.99 ± 22.53</td>
<td>892.02 ± 32.19</td>
<td>679.22 ± 59.53</td>
<td>533.38 ± 59.53</td>
<td>5.00 ± 0.28</td>
</tr>
<tr>
<td>Restraint Control</td>
<td>376.30 ± 29.19</td>
<td>699.77 ± 72.66</td>
<td>750.10 ± 67.12</td>
<td>731.43 ± 19.72</td>
<td>4.24 ± 0.37</td>
</tr>
<tr>
<td>Graviola treated</td>
<td>588.99 ± 62.34*</td>
<td>930.82 ± 13.32</td>
<td>402.76 ± 22.24</td>
<td>588.24 ± 47.25</td>
<td>8.10 ± 0.15</td>
</tr>
</tbody>
</table>

* p<0.01 compared to restraint control

Antimicrobial and Antiprotozoal Activity

Antiparasitic

Methanol, hexane and ethyl acetate extracts of the seed, stem, bark and pericarp have demonstrated in vitro antiparasitic activity against E. histolytic, N. brasiliensis, M. dessetae, A. salina, Leishmania trypansoma, L. braziliensis, L. panamensis and L. promastigotes.

Antimalarial

Ethanol leaf extracts have shown in vitro antimalarial activity against Plasmodium falciparum D-6 & W-2 at IC50= 20 - 63 mcg/ml.

Antibacterial

Leaf, stem and bark water, acetone, methanol and ethanol extracts have demonstrated in vitro antibacterial activity at concentrations of 2-3 mcg/plate to 1 mg/disc. Organisms the extracts are active against include: E. coli, P. aeruginosa, S. flexneri, S. spp., S. marcescens, S. aureus, S. albus, S. newport, B. subtilis.

Antiviral

A water soluble fraction from the stem had an antiproliferative effect on HIV-infected cells in vitro at IC50= <2mcg/ml. The stem and bark in an ethanol extract at 1 mg/ml had in vitro activity against herpes simplex 1, while the root had activity against herpes simplex type 2 in vitro at CC50 and EC50=0.5 mcg/ml.
Molluscicidal
Stem, bark and leaf ethanol extracts have demonstrated in vitro activity against B. glabrata at LD50-0.97-20.26 ppm.6,75

Insecticidal
The leaf had activity against the following insects in vitro: M. sanborni, L. decemlineata, M. persicae, Blatella germanica.53-55

Antiulcer Activity
Stem and bark ethanol extracts at 100 mg/kg intragastrically in rats had antiulcer activity.76

Antioxidant Activity
Stem and bark ethanol extracts at 100 mg/kg intragastrically in rats had antioxidant activity.77

Antihepatotoxic Activity
A leaf decoction reduced ASAT leakage by hepatocytes in vitro at 1 mg/plate.78

Mechanism of Action
Anticancerous Activity
Cytotoxic Activity
Anticancerous and cytotoxic effects of graviola are attributed to the annonaceous acetogenins which have a number of mechanisms including:

- Inhibition of NADH oxidase in the plasma membranes of cancer cells. This enzyme is only transiently expressed in 'normal healthy' cells. By inhibiting this enzyme cellular ATP is depleted.46,79,80
- Inhibition of complex I (NADH:ubiquinone oxidoreductase) in mitochondrial electron transport systems, inhibiting oxidative phosphorylation and resulting in lower ATP levels, hence inhibiting cancer cell growth.46,80-83
- Inhibition of cancer cells that are multidrug resistant. Increased expression of a plasma membrane pump, P-glycoprotein, is a contributor to multidrug resistance. The pump ensures elimination of the anticancer compound before it can have its effect on the cancer cell. Two intracellular ATP-binding sites are found on P-glycoprotein, and the pump activity requires ATP. The acetogenins, through depletion of ATP, can reduce the activity or shut down the P-glycoprotein pump.46,80,84
- Cancer cells at the S phase of their cell cycle are more vulnerable to the acetogenin annonacin. Annonacin is able to arrest the cell cycle in the G1 phase, and inhibit the S phase progression. In addition p53 and p21, cell cycle checkpoint proteins, were enhanced by annonacin.46

© Copyrighted 2004. Raintree Nutrition, Inc. Carson City NV 89701 All rights reserved.
• The acetogenin annonacin is able to induce apoptotic cell death. It enhanced the expression of Bax and Bad, but not Bcl-2 or Bcl-xL.

Through the above mechanisms of action the acetogenins are able to decrease oxidative phosphorylation and cytosolic ATP production. Deprivation of the cancer cells ATP results in apoptosis of the cancer cell.

Neurological Activity

Antidepressant, sedative and tranquilizing properties of graviola may be due to the ability of certain alkaloids to have agonistic properties towards 5-HT1A receptors in calf hippocampus.

Cold immobilization stress in rats causes depletion of norepinephrine and dopamine levels in the brain. It also decreases MAO (monoamine oxidase) activity which leads to increases in 5-HT and 5-HIAA levels. Pretreatment with graviola prevented the stress-induced depletion of norepinephrine and dopamine, helping the organism cope better during stress. In addition pre-treatment with graviola reduced the stress-induced rise in brain 5-HT and 5-HIAA, and increased MAO activity. It was concluded that graviola had a normalizing effect in rats against a variety of stressors, indicating it had adaptogenic potential.

The potential neurotoxic effect of the seeds, root and rootbark is discussed under Chemicals.

Antimicrobial Activity

Graviola has insecticidal activity which is attributed to the acetogenins. They are suggested for use in the control of insect pests such as cockroaches. Pest ingestion of the acetogenins produces mortality in both susceptible and insecticidal/pesticidal-resistant cockroaches. The effectiveness of the acetogenins against insecticidal/pesticidal-resistant insects suggests that pesticide-resistance is associated with ATP-dependent factors.

Overall Activity

The activity of graviola is mainly attributed to the acetogenins, which are mitochondrial respiratory chain complex I inhibitors.

Dosage

Internal
Crude Preparations, Leaf and Stem
2 grams three times daily
Infusion: 1 cup (150 ml) boiling water poured over approximately 2 grams of dried leaf and stem and steep, covered, for 5-10 minutes, 3 times daily between meals
Tincture: Of a 1:2 tincture take 2-4 ml three times daily

Duration of Administration

Internal
Long-term administration (6 months) with no health complaint may deplete healthy cells of ATP. Duration of administration varies per complaint and individual.
Contraindications

Pregnancy and Lactation: Graviola has documented uterine stimulant activity in an animal study (rats) and should not be used during pregnancy.62

Graviola has demonstrated hypotensive, vasodilator, and cardiodepressant activities in animal studies and is contraindicated for people with low blood pressure.63

Drug Interactions

Graviola may potentiate antihypertensive and cardiac depressant drugs.63,64

It may potentiate antidepressant drugs and interfere with MAO-inhibitor drugs.66,67

Co-enzyme Q10 may reduce the activity of graviola. Coenzyme Q10 is required for the function of the ubiquinone oxidoreductase, which graviola has been shown to inhibit.66,80-83

Side Effects

Graviola has demonstrated emetic properties in one animal study with pigs. Large single dosages may cause nausea or vomiting.31

Safety Rating

Not rated.

Alcohol extracts of graviola leaf showed no toxicity or side effects in mice at 100 mg/kg intraperitoneally; however, at a dosage of 300 mg/kg, a reduction in explorative behavior and mild abdominal constrictions was observed.65

Alkaloids in the rootbark, root and seed of graviola have been linked to a levodopa-resistant parkinsonism. In vitro studies show they cause DNA damage and apoptosis of dopaminergic cells and GABAergic neurons.50 Excessive consumption of these parts of the plant should be avoided.

References

16. Ibid.
18. Ibid.
30. Ibid.